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Abstract Bruch, in early work, treated a spatially free Moshinsky atom with four
parallel-spin electrons interacting harmonically. Here we add a harmonic external
potential, having an unrelated spring constant k, and use the variational method, with
a one-parameter trial wave function, to examine the quintet ground state energy and
electron density, particularly in the weak confinement limit k → 0. The results are
compared with Bruch’s and modest contact is made with the early work of Post.

Keywords Moshinsky atom · Harmonic confinement · Beryllium · Quintet state

1 Introduction

Model two-electron atoms with harmonic confinement, going back at least to the work
of Moshinsky [1], have now been solved for arbitrary electron-electron interaction
u(r12) by Holas et al. [2]. A recent study by Amovilli and March [3] of the Hookean
atom with four Coulombically repelling electrons employed diffusion quantum Monte-
Carlo (DQMC) simulations. These authors demonstrated that, for an external confining
potential Vext (�r) given by
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Vext (r) = 1

2
kr2, (1.1)

as k was varied from strong to weak values, there is a cross-over from a triplet ground-
state 3 Pg to a quintet configuration 5Su , the 3 Pg state being lowest in energy for
large k.

In the present article, we shall restrict attention to the Moshinsky-Post atom with
four-electrons in the quintet S = 2 state. It is then fortunate that the exact wave
function, denoted below by �B , is known in the limit of infinitesimal confinement
(k → 0 in (1.1)) from calculations going back, at least, to Bruch [4] in 1980. To
summarize, the four electron spatial wave function �B( �r1, �r2, �r3, �r4) in unnormalized
form can be written

�B(�r1, �r2, �r3, �r4) = �u · (�v × �w)eQ, (1.2)

where

�u = 1

2
(�r1 + �r2) − 1

2
(�r3 + �r4), (1.3)

�v = �r1 − �r2, �w = �r3 − �r4, (1.4)

and

Q = −m�

4h̄
(2u2 + v2 + w2). (1.5)

To this notation we also add the center of mass coordinate

�R = 1

4
(�r1 + �r2 + �r3 + �r4). (1.6)

In (1.5) � is related to the strength K of the harmonic electron-electron interaction

U (ri j ) = 1

2
Kr2

i j (1.7)

by

�2 = K

m
. (1.8)

Defining, as in [1] an energy unit

ε = h̄� (1.9)

the quintet wave-function above corresponding to total energy 15ε.
With this background, we turn immediately to make a variational generalization of

Bruch’s wave-function, designed for weak force constant k in the external potential
(1.1).
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2 Generalization of Bruch’s wave function for small non-zero k

Denoting the Hamiltonian yielding the Bruch k → 0 limit of � given in (1.2) by
ĤB we now proceed variationally for the lowest quintet state of the Hamiltonian Ĥ
defined by

Ĥ = ĤB +
4∑

j=1

Vext (r j ), (2.1)

where Vext is given (1.2). The variational generalization of �B proposed immediately
below we have designed appropriately to describe k �= 0 in (1.1), but remaining small.

We begin with Bruch’s observation that the 4-electron Moshinsky Hamiltonian can
be decomposed into free center-of-mass motion and harmonic oscillation with respect
to the variables in (1.3), (1.4):

ĤB = 1

8m
P2

R + Ĥu + Ĥv + Ĥw, (2.2)

where

Ĥu = 1

2m
p2

u + 2K u2

Ĥv = 1

m
p2
v + Kv2

Ĥw = 1

m
p2
w + Kw2. (2.3)

We also note that, with (1.1) as the external potential, (2.1) becomes

Ĥ = ĤB + Ĥc

Ĥc = 2k R2 − h̄k

m�
Q, (2.4)

with Q defined in (1.5). Also, because the transformation {�r1, �r2, �r3, �r4} →
{ �R, �u, �v, �w} is linear with unit Jacobian we can work in terms of the latter set of
variables with no complications. We now choose the one-parameter trial wave func-
tion

�( �R, �u, �v, �w) = �Be−αR2
(2.5)

with �B given in (1.2), for which ĤB�b = 15ε. Thus, it is easily seen that

E(α) = < �|Ĥ |� >

< �|� >
= 15ε + 3αh̄2

4m
+

(
2k − α2h̄2

2m

)
< R2 > − h̄k

m�
< Q > .

(2.6)
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Also < R2 >= 3/4α and < Q >= −(�/2)∂ ln < �B |�B > /∂�. We therefore
require the normalization constant for (1.2), which is not given in [1] and for which
the evaluation is complicated somewhat by the triple product in (1.2). However, with
respect to spherical coordinates with �u along the polar axis,

[�u · (�v × �w)]2 = u2v2w2 sin2 θv sin2 θw sin2(φv − φw). (2.7)

Hence,

< �B |�B > = 4π

∞∫

0

duu4e− m�
2h̄ u2

⎡

⎣
∞∫

0

dvv4e− m�
4h̄ v2

⎤

⎦
2

×
⎡

⎣
π∫

0

dθ sin3 θ

⎤

⎦
2 2π∫

0

dφv

2π∫

0

dφw sin2(φv − φw). (2.8)

All the integrations in (2.8) are elementary, yielding < �B |�B > = 192 π9/2

(h̄/m�)15/2 whose logarithmic derivative with respect to � is −15/2�. Thus,

E(α) = 15ε + 3αh̄2

8m
+ 3k

2α
− 15

h̄k

4m�
. (2.9)

The minimum energy

E0 = ε

[
15 + 3

4

√
k

K
− 15

4

(
k

K

)]
(2.10)

occurs for α = √
4mk/h̄.

3 Electron density

The next task is to evaluate the one-electron density normalized to four electrons,
which we write as the twelvefold integral

ρ(�r) = C
∫

d �u d �v d �w d �R δ

[
�r − �R + 1

2
(�u + �w)

]
e−2αR2

e2Q[�u · (�v × �w)]2,

(3.1)

where C is a normalization constant. After the immediate �R− integration it is simplest
to use rectangular coordinates and set �r = (0, 0, r). Thus we are left with the ninefold
integral
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ρ(r) = −Ce−2αr2

∞∫

−∞
du1 . . . dw3e−αL−S

∣∣∣∣∣∣

u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣

2

, (3.2)

where

L = 2r(u3 + w3) + u1w1 + u2w2 + u3w3 (3.3a)

S = 1

2

(
α + 2m�

h̄

) (
u2

1 + u2
2 + u2

3

)
+ 1

2

(
α + m�

h̄

) (
w2

1 + w2
2 + w2

3

)

+m�

2h̄

(
v2

1 + v2
2 + v2

3

)
. (3.3b)

Evaluating (3.2) is tedious, but is eased by the fact that all the integrals are Gaussian
and there is no need to keep track of constant pre-factors, as they can be absorbed into
C . The final result , after normalizing the density to 4e is

ρ(r) = 16e

3π(6π)1/2

3α + 2m�/h̄

3α + 2m�/h̄ + 9α2 e−λr2
(1 + βr2), (3.4)

where

λ = 4αm�

(3h̄α + 2m�)

β = 4α2

3α + 2m�/h̄
.

Finally, from (3.4) we can calculate the potential energy term

∫
ρ(r)Vext (r)d�r =

3eh̄k
(

5β + 8αm�
h̄

)

4αm�
(

3β + 8αm�
h̄

) . (3.5)

4 Summary and future directions

In this work we have generalized the exact limiting result of Bruch [1], valid as k → 0
in (1.1), for four electrons in the lowest quintet state, having exact wave function �B

in (1.2) and corresponding energy 15ε. Our proposed variational wave-function can
only be expected to be qualitatively useful when k remains small. But, most impor-
tantly, we have generated from the proposed variational function, the corresponding
inhomogeneous electron density, while, of course, the infinitesimal confinement limit,
solved by Bruch, corresponds to an (infinitesimal) constant density.

Finally, we have used the variational density to calculate the potential energy term∫
ρ(r)Vext (r)d�r .
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